在现代企业的订单处理流程中,不同类型的订单文档往往需要不同的处理逻辑和专业知识。传统的人工分类方式效率低下且容易出错,而基于规则的自动化系统又难以应对复杂多变的业务场景。本文将介绍如何利用大语言模型(LLM)构建一个高质量的订单文档分类器,实现智能路由到专业Agent的完整解决方案。
[Read More]意图识别模块实现的最佳实践
构建高效、可扩展的 AI 意图识别系统
在构建智能对话系统、聊天机器人或语音助手时,意图识别(Intent Recognition)是最核心的组件之一。一个设计良好的意图识别模块不仅能准确理解用户需求,还能随着业务发展灵活扩展。本文将深入探讨意图识别模块实现的最佳实践,帮助你构建生产级的意图识别系统。
[Read More]深入理解RAG:检索增强生成技术的原理与实践
从零开始构建高效的RAG系统
在大语言模型(LLM)快速发展的今天,我们面临一个核心挑战:如何让模型能够访问和利用实时、专业或私有的知识?纯粹依赖预训练的模型往往会出现知识过时、幻觉问题,或者无法回答特定领域的问题。这就是检索增强生成(Retrieval-Augmented Generation, RAG)技术应运而生的原因。
RAG通过将外部知识库的检索能力与LLM的生成能力相结合,为这个问题提供了一个优雅的解决方案。它不需要重新训练模型,就能让AI系统访问最新的、特定领域的知识,同时显著降低幻觉问题。本文将深入探讨RAG的核心原理、架构设计以及实际应用中的最佳实践。
[Read More]